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Abstract

Obstructive sleep apnea (OSA) is a prevalent condition and strongly associated with metabolic disorders. Sleep
fragmentation (SF) is a major consequence of OSA, but its contribution to OSA-related morbidities is not known. We
hypothesized that SF causes specific perturbations in transcriptional networks of visceral fat cells, leading to systemic
metabolic disturbances. We simultaneously profiled visceral adipose tissue mRNA and miRNA expression in mice exposed to
6 hours of SF during sleep, and developed a new computational framework based on gene set enrichment and network
analyses to merge these data. This approach leverages known gene product interactions and biologic pathways to
interrogate large-scale gene expression profiling data. We found that SF induced the activation of several distinct pathways,
including those involved in insulin regulation and diabetes. Our integrative methodology identified putative controllers and
regulators of the metabolic response during SF. We functionally validated our findings by demonstrating altered glucose
and lipid homeostasis in sleep-fragmented mice. This is the first study to link sleep fragmentation with widespread
disruptions in visceral adipose tissue transcriptome, and presents a generalizable approach to integrate mRNA-miRNA
information for systematic mapping of regulatory networks.
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Introduction

Obstructive sleep apnea (OSA) is a highly prevalent disorder in

adults and children [1–3] and associated with significant cognitive,

metabolic, and cardiovascular morbidities [4–8]. OSA is charac-

terized by recurrent collapse of the upper airway during sleep,

leading to intermittent hypoxia and sleep fragmentation (SF).

There is accumulating evidence that OSA is strongly linked to

metabolic dysregulation, independent of obesity [9,10]. Further-

more, fragmentation of sleep architecture is being recognized as an

important contributor to OSA-related morbidities and can cause

altered glucose homeostasis even in normal subjects [11]. SF may

promote the adverse metabolic consequences of sleep apnea by

perturbing normal visceral adipose tissue function and altering

insulin sensitivity [12,13], but the biological effects of SF on fat

tissue are not known. Since visceral fat tissue depots are critical

regulators of metabolism [14,15], understanding the pathophys-

iologic consequences of SF on adipocyte biology is a crucial step in

elucidating mechanisms linking OSA with metabolic dysregula-

tion.

The advent of transcriptional profiling using mRNA micro-

arrays has yielded important insights into the function of adipose

tissue under various conditions [16–18]. More recently, micro-

RNAs (miRNAs)—small, noncoding single strand RNAs abundant

in eukaryotic cells—have emerged as central regulators of gene

expression, exerting their influence through partial base-pairing

with their target mRNAs that leads to their degradation or

repression of translation [19,20]. miRNAs are key effectors of

many biological processes including adipocyte differentiation,

metabolism, and insulin homeostasis [21–24]. A few studies have

exploited miRNA profiling to define the transcriptional response

of adipose tissue under normal and disease conditions [25–28], but

no such efforts have been reported in OSA patients or in animal

models of sleep apnea. The ability to simultaneously interrogate

mRNA and miRNA gene expression from the same tissue is a

promising venue for constructing gene regulatory networks in

complex disorders, and a number of strategies for combining

miRNA with mRNA have been proposed [29–32]. To our

knowledge, this integrative approach has not been applied to

investigate the effects of SF on the transcriptional circuitry of

adipocytes. In this study, we induced SF in mice and developed a

novel framework to mesh information from large-scale mRNA-

miRNA profiling of visceral adipose tissue in order to systemat-

ically identify perturbed pathways within the context of their

putative regulatory miRNAs. We validated our approach by

demonstrating the functional relevance of a highly enriched
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module—‘‘insulin regulation and diabetes’’—by assessing glucose

homeostasis and insulin resistance in sleep-fragmented mice.

Materials and Methods

Animal experiments
Male C57BJ/6L mice (Jackson Laboratory, Bar Harbor, Maine)

of 10 weeks of age were used in this study. These mice were

housed in 12-hour light/dark cycle (lights on at 7 a.m. to 7 p.m.) in

constant temperature (2661uC) with ad libitum access to food and

water. At the end of the experimental period, the mice underwent

brief anesthesia using carbon dioxide (1–2 min) and were

euthanized immediately by cervical dislocation. Abdominal cavity

was surgically opened and white (visceral) adipose tissue was

dissected from the epididymis within ,5 min, immediately frozen

in liquid nitrogen, and stored at 280uC until RNA extraction. All

protocols were approved by the Institutional Animal Care and Use

Committee and are in close agreement with the National Institutes

of Health Guide in the Care and Use of Animals. All efforts were made

to minimize animal suffering and to reduce the number of animals

used.

Sleep fragmentation (SF)
Using a rodent model of sleep fragmentation recently developed

and validated in our laboratory [33,34], sleep was disrupted by the

movement of an automated bar for the duration of exposure (6 h).

This method prevents the need for human contact and interven-

tion, introduction of foreign objects or touching of the animals

during sleep, and is therefore superior to other existing methods of

sleep disruption. To induce moderate to severe sleep fragmenta-

tion (mimicking patients with sleep apnea), we chose a 2-minute

interval between each sweep, implemented during the light period

(7 a.m. to 7 p.m.) with no activation of the sweeper during the

night period (7 p.m. to 7 a.m.). Of note, two mice were housed in

each sleep fragmenter cage to minimize isolation stress.

RNA isolation
Total RNA and miRNA were isolated from the same visceral fat

adipose tissues of each animal (SF: n = 8, control: n = 8). Total

RNA was isolated using automated RNA extraction (Promega,

Madison, WI) and DNase treated according to manufacturer’s

protocol. miRNA was isolated using miRNeasy Mini kit (Qiagen,

Turnberry Lane, Valencia, CA.). The RNA quality and integrity

were determined using the Eukaryote Total RNA Nano 6000

LabChip assay (Agilent Technologies) on the Agilent 2100

Bioanalyzer. The quality of miRNA was determined using Agilent

Small RNA Kit according to the manufacture’s protocol. Both

total RNA and miRNA samples were quantified on a Nanodrop

2000 (Ambion, Austin, TX).

Microarray experiments
mRNA microarrays. Whole-genome mouse Agilent micro-

arrays were used to profile visceral fat gene expression during SF

and control conditions. Purified total RNA (500 ng) was processed

for labeling using the Low RNA Input Fluorescent Linear

Amplification Kit (Agilent Technologies, Santa Clara, CA). Equal

quantities of total RNA were labeled with each reaction containing

50 ng of total RNA and 2 ml (34 pg) of RNA spike-in control.

Cyanine 3-labeled CTPs were obtained from PerkinElmer/NEN

Life Sciences (Boston, MA). Agilent’s Low Input Fluorescent

Linear Amplification kit was used to generate cRNA for one color

as we have previously described [35]. The quality of each cRNA

sample was evaluated using 2100 Bioanalyzer (Agilent Technol-

ogies, Santa Clara, CA). Each sample was hybridized to an Agilent

oligonucleotide microarray for a total of 16 independent

experiments. The microarray slides were scanned using Agilent

dual-laser Microarray Scanner and the digitized images were

acquired and processed using Agilent Feature Extraction (FE)

software v.9.5. One of the mRNA microarray experiments (in the

control group) failed our hybridization quality assessment and was

excluded from further analysis. Background-subtracted intensities

were normalized using the quantile method across all remaining

15 microarray experiments.

miRNA microarrays. Each sample was prepared according

to the Agilent’s miRNA (627 mouse miRNAs and 39 mouse viral

miRNA) using the one-color technique in accordance with the

manufacturer’s instructions. The samples were profiled on the

Agilent Mouse miRNA Microarray (Agilent Technologies),

consisting of 60-mer DNA probes synthesized in situ that represent

620 mouse miRNA and 39 viral miRNAs from the Sanger

database (Version 10.1), using the one-color technique in

accordance with the manufacturer’s Instructions. Total RNA

including enriched miRNA (100 ng) was dephosphorylated with

calf intestine alkaline phosphatase (GE Healthcare Europe

GmbH), denatured with dimethyl sulfoxide, and labeled with

pCp-Cy3 using T4 RNA ligase (GE Healthcare Europe GmbH).

The labeled RNAs were hybridized to Mouse miRNA Micro-

arrays Agilent Technologies (Santa Clara, CA). After hybridiza-

tion and washing, the arrays were scanned with an Agilent

microarray scanner using high dynamic range settings as specified

by the manufacturer. Microarray results were extracted using

Agilent Feature Extraction software (v9.5.3.1) [36]. Undetected

probes were excluded from further analysis. Background-subtract-

ed intensities were normalized for detected miRNA probes using

the quantile method across all 16 microarray experiments.

Microarray data analysis
mRNA microarrays. To determine enriched biologic pro-

cesses, we applied gene set enrichment analysis (GSEA) to the

visceral fat mRNA microarray dataset of mice exposed to SF

(n = 8) and controls (n = 8) [37]. We performed random gene set

permutation (n = 2000) using approximately 3200 curated gene

sets and 1400 Gene Ontology annotations. We chose a false

discovery rate (FDR, Q-value) threshold of ,5% for significance.

Since even using a strict FDR cutoff, many pathways and genes

were significantly enriched, we limited our analysis to subsets of

differentially expressed genes within each gene set that were the

primary drivers of the enrichment score, known as the leading

edge [38]. Furthermore, gene sets involved in similar functions

such as ‘‘insulin regulation’’ and ‘‘diabetes pathways’’ or

‘‘mitochondrion’’ and ‘‘oxidative phosphorylation’’ were com-

bined.

miRNA microarrays. We identified differentially expressed

miRNAs in visceral fat tissue of SF and control mice using a

Bayesian implementation of the parametric t-test combined with

FDR correction using Q-value (cutoff,5%). Gene targets for

differentially expressed miRNAs were computationally predicted

using the miRanda algorithm [39,40] as implemented in the

MicroCosm Target web resource (http://www.ebi.ac.uk/enright-

srv/microcosm/htdocs/targets/v5/) [41].

Schema for integrating mRNA-miRNA data. Figure 1

outlines our general model for mRNA-miRNA data integration.

This approach is based on two principles. First, we assume that the

expression of a given miRNA is anti-correlated with the mRNA

expression of its targets. This is a widely accepted and

experimentally verified supposition [42]. Second, unlike other

published methods based on tests identifying differential expres-

sion of individual genes, we select enriched gene sets from the

Sleep Disruption and Visceral Adipose Tissue
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mRNA microarray experiment using GSEA. Note that other

proposed pathway-centric methodologies can be substituted for

GSEA in this step [43,44]. The rationale for this approach is the

recognition that biologic processes result from coordinated

activation of coherent sets of genes known as modules [45,46]—

a paradigm ideally captured thorough pathway enrichment

analysis. The final step of this procedure involves systematic

linkage of differentially expressed miRNAs to their corresponding

pathways based on the presence of predicted target genes within

enriched modules.

Network analysis. A genetic network was constructed for

the enriched ‘‘insulin regulation and diabetes pathways’’ module

based on experimentally verified gene product interactions derived

from Ingenuity [47] and STRING [48] knowledgebases. Insulin

was incorporated within the network to highlight its central

relationship with the other nodes.

Quantitative RT-PCR (qPCR)
qPCR analysis was performed for selected mRNAs and

miRNAs using ABI PRISM 7500 System (Applied Biosystems,

Foster City, CA). The same total RNA was used for both

microarray and qPCR experiments. To confirm candidate

mRNAs, cDNA was synthesized using one microgram of total

RNA using a High-Capacity cDNA Archive Kit (Applied

Biosystems, Foster City, CA). Ribosomal 18S rRNA, was used

as a reference gene to normalize the expression ratios. All

experiments were performed in triplicates. The cycle number (Ct)

values were averaged and the difference between the 18S Ct and

the gene of interest Ct were calculated to calculate the relative

expression of the gene of interest using the 22DDCt method [49].

The results are presented as fold change (SF relative to control

conditions).

miRNAs selected for confirmation were reverse transcribed with

looped microRNA-specific reverse transcriptase (RT) primers

(Applied Biosystems, Foster City, CA) using the TaqMan

microRNA mouse assay according to the manufacturer’s protocol.

Briefly, RT reactions were performed in a volume of 15 ml, and

each reaction contained 10 ng of enrich miRNA. RT reactions

were performed on a GeneAmpPCR System 9600 (Applied

Biosystems, Foster City, CA). Reactions without addition of

reverse transcriptase were performed alongside cDNA synthesis of

each sample and used in subsequent procedures to control for

potential genomic DNA contamination. All TaqMan assays were

run in triplicate on an ABI Prism 7500 using TaqMan Universal

PCR Master Mix II without UNG (Applied Biosystems, Foster

City, CA). The qPCR results were normalized against an internal

control (RNU6), and then expressed as fold changes (SF relative to

control conditions).

Metabolic assessments
Metabolic parameters were measured in a different group of

control (n = 8) and SF (n = 7) mice following 6 hours of fasting

(with ad libitum access to water). Blood glucose and insulin levels

were measured immediately before glucose injection and the

homeostasis model assessment (HOMA) insulin resistance (IR)

equation (HOMA-IR index) was calculated [50]. For glucose

tolerance test (GTT), mice were injected with (2 g/kg) of D-

glucose (Sigma Chemical Co., St. Louis, MO) intra-peritoneally.

Blood samples were collected from lateral tail vein by puncture at

0, 15, 30, 60 and 120 min following the glucose injection. Glucose

levels were measured using a glucometer (One Touch Ultra,

Lifescan). Triglyceride levels were measured in an independent

group of control mice (n = 5) and animals exposed to 3 weeks of SF

(n = 5). Mice were fasted for 3 hours prior to blood collection.

Plasma triglyceride levels (mg/dl) were measured using Infinity kits

(Thermo Fisher Scientific, Waltham, MA) according to the

manufacturer’s protocol.

Statistical analysis
Two-tailed Mann-Whitney test with unequal variance was used

to compare HOMA-IR and plasma triglyceride levels between SF

and control mice (GraphPad Prism version 5, San Diego, CA).

The GTT time course experiment was analyzed using two-way

ANOVA with time and exposure (SF, control) as variables. The

ANOVA P-value reported corresponds to the significance of

exposure effect. All data are shown as mean 6 SEM.

Results

SF elicits differential expression of miRNAs in visceral
adipose tissue

We identified 19 differentially expressed miRNAs (9 up-

regulated, 10 down-regulated) in response to SF in visceral fat

cells using a Q-value cutoff ,5% (Figure 2). We confirmed the

differential expression of several candidate miRNAs using qPCR

as presented in Table 1.

Exposure to SF alters the transcriptional profile of visceral
adipocytes and is associated with enrichment of specific
pathways

We applied GSEA to mRNA probesets matching to unique

genes and demonstrated that SF induced profound transcriptional

Figure 1. Outline of a general approach for integrating mRNA-
miRNA data. Concurrent miRNA and mRNA profiling of the same
tissue under control and exposure conditions is performed. The mRNA
information is processed using gene set enrichment analysis with
further refinements based on leading edges of enriched biologic
modules. Meanwhile, differentially expressed miRNAs as well as their
computationally-derived targets are also identified. These data are then
merged based on anti-correlated expression of leading edge genes and
their corresponding putative miRNAs.
doi:10.1371/journal.pone.0037669.g001
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perturbations in fat tissue (Figure 2). We confirmed our findings

for select candidate genes using qPCR (Table 2). Subsequent

leading edge analysis identified two distinct patterns of differential

gene expression, each associated with enrichment of select gene

sets in mice exposed to SF or controls (enrichment Q-value,5%).

Biologic modules comprised of up-regulated genes in response to

SF included ‘‘mitochondrion and oxidative phosphorylation’’,

‘‘insulin regulation and diabetes pathways’’, ‘‘lipoprotein biosyn-

thesis and protein lipidation’’ and ‘‘proteasome pathways’’.

Modules enriched in genes down-regulated during exposure to

SF included ‘‘fatty acid metabolism and regulation by PPARa’’,

‘‘glycolytic pathways’’, ‘‘DNA binding and chromosomal organi-

zation’’, ‘‘cytoskeleton and extracellular matrix’’, ‘‘Rho and Ras

GTPase activity’’ and ‘‘complement pathways’’.

miRNA-mRNA data integration identifies putative
regulators of SF-induced pathways

As outlined in Figure 1 and discussed in the Methods section, we

systematically linked differentially expressed miRNAs with gene

members of enriched pathways based on anti-correlated expres-

sion levels. Figure 2 summarizes our results and highlights putative

regulatory relationships between miRNAs and their corresponding

biologic pathways in visceral adipose tissue of sleep-fragmented

mice. All differentially expressed miRNAs were associated with at

least one enriched pathway and in many instances interacted with

multiple modules.

Network analysis reveals control sites of a representative
enriched pathway

To further elucidate relationships among members of gene sets,

we constructed a gene product interaction network, or inter-

actome, for the ‘‘insulin regulation and diabetes’’ module. As

depicted in Figure 3, this interactome—like many biologic

networks [51]—was characterized by a few densely connected

hubs and several distinct motifs representing key functional units

including NADH dehydrogenase, ribosomal activity, ATP syn-

thase, and cytochrome c oxidase. Importantly, many members of

Figure 2. Integrated mRNA-miRNA analysis of visceral fat tissue transcriptome during SF. Heatmaps depict gene expression profiles of
enriched pathways and differentially expressed miRNAs in response to SF. The miRNAs are linked to their respective modules based on whether these
pathways harbor target genes. Note that one mRNA microarray experiment was excluded due to poor hybridization (gray column).
doi:10.1371/journal.pone.0037669.g002

Table 1. qPCR confirmation of selected differentially
expressed miRNAs.

Microarray qPCR

P-value Fold P-value Fold

mmu-miR-29b 5.461024 21.68 1.061022 21.59

mmu-miR-350 2.461024 21.54 4.061023 20.46

mmu-miR-185 3.961023 21.46 2.061023 21.47

mmu-miR-154 2.561027 2.39 2.061023 2.79

mmu-miR-300 1.461026 1.95 3.061023 2.16

mmu-miR-434-3p 2.861027 2.42 2.061023 3.79

doi:10.1371/journal.pone.0037669.t001

Table 2. qPCR confirmation of selected differentially
expressed genes.

Microarray qPCR

P-value Fold P-value Fold

Mlx 6.661023 1.46 5.461023 1.84

Gja4 2.261026 2.11 1.061023 2.79

Mt1 5.661026 2.69 3.061023 2.16

Srpk2 4.161026 2.40 2.061023 3.79

Cxcl13 1.761026 28.58 5.061023 23.67

Aldh2 1.361028 25.79 3.061023 24.22

Acaca 5.661026 23.99 2.061023 23.78

doi:10.1371/journal.pone.0037669.t002
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this module interacted with insulin, highlighting the expected

central role played by this molecule. Superimposed on the ‘‘insulin

regulation and diabetes’’ interactome were differentially expressed

miRNAs postulated to regulate its biologic function. We observed

that a member of this module, MAX-like protein X (MLX),

interacted with glucagon (GCG)—a central regulator of glucose

homeostasis—and was the most highly connected putative target

of miRNAs in the network, being linked to mmu-miR-29b, mmu-

miR-29c, and mmu-miR-350 (Figure 3). We confirmed the anti-

correlated expression pattern of two of these miRNAs and Mlx

using qPCR (Tables 1 and 2). Our findings implied that since Mlx

was a differentially upregulated gene and the putative target of

multiple downregulated miRNAs, it may play an important

regulatory role in the ‘‘insulin regulation and diabetes’’ module—a

prediction that is supported by recent reports [52,53].

Functional validation of dysregulated glucose and lipid
homeostasis following SF

Since our computational analyses highlighted perturbations in

‘‘insulin regulation and diabetes’’ gene set during exposure to SF,

we proceeded to compare metabolic measures of glucose

homeostasis in SF and control mice. As shown in Figures 4 and

5, animals exposed to 6 hours of SF developed significant insulin

resistance and impairment of glucose tolerance. Another enriched

module, comprised of downregulated genes after SF, was ‘‘fatty

acid metabolism and regulation by PPARa’’ (Figure 2). We have

observed systemic disturbances in lipid profiles of mice after

chronic exposure to SF (unpublished data) and therefore measured

fasting plasma triglyceride levels in mice following 3 weeks of SF.

As depicted in Figure 6, mice subjected to chronic SF had

significant elevation of their triglyceride levels, implying dysreg-

ulated lipid metabolism.

Discussion

In this study, we report on the first systematic effort to map the

regulatory transcriptional landscape of visceral adipocytes in

response to sleep fragmentation—a key pathophysiologic event

in sleep apnea. To achieve this aim, we developed a framework for

integrating mRNA-miRNA expression profiles based on gene set

enrichment and network analyses. Our results demonstrated that

exposing mice to SF induced widespread alterations in their fat cell

transcriptome and was associated with enrichment of distinct

pathways.

Although obstructive sleep apnea is associated with insulin

resistance, impaired glucose tolerance, and type 2 diabetes [54–

56], the role of SF in contributing to these metabolically

dysfunctional states is not known. Our findings suggest that SF

promotes metabolic disturbances by perturbing regulatory net-

works in visceral adipose tissue—including those involved in

Figure 3. Network analysis of the ‘‘insulin regulation and diabetes’’ pathway. Members of this enriched module were linked together
based on verified gene product interactions. Several distinct motifs were identified (shown in different colors). As expected, insulin assumed a central
position in this network. One upregulated candidate, MLX (red), was the putative target of multiple downregulated miRNAs (blue) and is postulated
to be a critical controller of visceral adipocytes’ metabolic response to SF. Note that several other downregulated miRNAs interacted with members of
this network, but are not shown in order to improve clarity.
doi:10.1371/journal.pone.0037669.g003
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glucose homeostasis. Leveraging information based on known

gene product relationships allowed us to fine-map putative

interactions in the enriched ‘‘insulin regulation and diabetes’’

module, and identify potentially important metabolic effectors

induced by SF. One such candidate, MLX, is a component of a

heterodimeric transcription factor that is a master sensor of

cellular energy status and regulator of glucose metabolism

[52,53,57]. In our animal model of SF, MLX was upregulated

in visceral adipocytes and was a putative target of several

differentially expressed miRNAs. While the biological roles of

miRNAs in adipose tissue remain mostly unknown, reduced

circulating levels of one of the MLX-regulating miRNAs—mmu-

mir-29b—has been associated with the development of type 2

diabetes [58], and the mmu-mir-29 family may be involved in

insulin signaling [59]. We confirmed that following acute

exposures to SF, mice develop insulin resistance and glucose

intolerance. Future work will be required to determine the

molecular mechanisms mediated by candidate genes and miRNAs

highlighted from our analysis that lead to the observed metabolic

dysregulation. There is increasing evidence that circulating levels

of miRNAs may be useful diagnostic and prognostic biomarkers

for common human disorders including obesity [60], diabetes [58]

and cardiovascular diseases [61], although no study to date has

investigated a role for miRNAs in sleep apnea.

In addition to the ‘‘insulin regulation and diabetes’’ gene set, we

identified several other enriched modules comprised of differen-

tially upregulated genes in response to SF, including ‘‘mitochon-

drion and oxidative phosphorylation’’ and ‘‘proteasome’’ gene

sets. These finding are consistent with our recent report identifying

these pathways as highly activated in visceral adipose tissue of mice

exposed to intermittent hypoxia [62]. Since intermittent hypoxia

and SF represent two critical perturbations in sleep apnea, the

overlapping of enriched gene sets implies that at the functional

pathway level, these insults promote similar alterations in

adipocyte biology.

It is important to note that while adipose tissue is a critical

regulator of glucose metabolism, many other organs such as the

liver, pancreas, hypothalamus, and skeletal muscle are also

important contributors. It is therefore highly likely that SF also

alters the transcriptional response within these tissues. Compre-

hensive profiling of other metabolic regulators was not within the

scope of this project and represents a future direction. Neverthe-

less, adipose tissues in general, and visceral fat in particular, are

widely regarded as the orchestrator of lipid storage and

metabolism—primarily in the form of triacylglycerol (triglyceride).

To assess whether SF is associated with adipose tissue dysfunction,

we measured plasma triglyceride levels in mice subjected to 3

weeks of SF and found that chronic sleep disruption resulted in

significant elevation of circulating triglycerides (Figure 6). Consis-

tent with this observation, our computational analyses had

identified ‘‘fatty acid metabolism and regulation by PPARa’’ as

an enriched gene set with most of its members down-regulated in

response to SF (Figure 2). Peroxisome proliferator-activated

receptor-alpha (PPARa) is a key controller of lipid metabolism

[63] and can be pharmacologically activated by fibrates—a class of

Figure 4. Acute sleep fragmentation causes dysregulation in
glucose homeostasis as demonstrated by the development of
insulin resistance in SF mice using the homeostatic model
assessment (HOMA-IR). Data are presented as mean 6 SEM.
doi:10.1371/journal.pone.0037669.g004

Figure 5. Reduced glucose tolerance in mice exposed to SF
compared to control animals. Mice (n = 8 control, n = 7 SF) were
injected with of D-glucose (2 g/kg) intra-peritoneally and glucose levels
measured at 0, 15, 30, 60 and 120 min following injection. P-value was
based on two-way ANOVA and corresponds to the significance of
exposure (glucose) effect. All data are shown as mean 6 SEM.
doi:10.1371/journal.pone.0037669.g005

Figure 6. Chronic sleep fragmentation is associated with
elevated circulating triglycerides. Mice were subjected to 3 weeks
of SF (n = 5) or used as controls (n = 5). Fasting plasma triglyceride levels
were measured and are presented as mean 6 SEM.
doi:10.1371/journal.pone.0037669.g006

Sleep Disruption and Visceral Adipose Tissue
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drugs used clinically to lower triglyceride level. Our findings

suggest that this pathway may also represent a potential

therapeutic target for sleep apnea-associated dyslipidemia.

In this work, we outlined a simple strategy to integrate data

from concurrent mRNA and miRNA profiling of the same tissue.

Unlike previous methods based on gene-level statistics, we

implemented a gene set enrichment approach because most

biologic processes result from coordinated activation of many

genes [45]. Importantly, since a given miRNA has multiple targets,

our methodology is ideally suited to capture the role of these

regulatory molecules in the context of functionally relevant

pathways. Furthermore, this approach is quite flexible (e.g., other

enrichment algorithms or metrics for differential gene expression

can be substituted) and is generalizable to any in vivo or in vitro

experimental system.

This study has several limitations. Exposure to SF was short

(6 hours); future work is required to investigate the chronic effects

of SF on adipose tissue and metabolism. Although we confirmed

differential expression of several candidates using qPCR, we did

not measure differences at the protein level. Furthermore, miRNA

targets were identified based on computational predictions and not

functionally validated. Finally, our enrichment and network

analyses represented the current state of knowledge. Since many

new relationships between gene products and pathways will be

discovered in the future, the presented network analyses capture a

subset of the biologic processes activated in this model.

In conclusion, we demonstrate that a short exposure to sleep

fragmentation perturbs the transcriptional circuitry of visceral

adipocytes and induces metabolic dysregulation in mice. We

propose a general strategy to integrate whole-genome mRNA and

miRNA profiling, and exploit this method to systematically map

genetic networks in fat tissue and identify pathways induced by SF

in the context of regulatory miRNAs.
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